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Abstract: Kriging-based finite element method (K-FEM) is an enhancement of the conventional 

finite element method using a Kriging interpolation as the trial solution in place of a polynomial 

function. In the application of the K-FEM to the Timoshenko beam model, the discrete shear gap 

(DSG) technique has been employed to overcome the shear locking difficulty. However, the applied 

DSG was only effective for the Kriging-based beam element with a cubic basis and three element-

layer domain of influencing nodes. Therefore, this research examines a modified implementation 

of the DSG by changing the substitute DSG field from the Kriging-based interpolation to linear 

interpolation of the shear gaps at the element nodes. The results show that the improved elements 

of any polynomial degree are free from shear locking. Furthermore, the results of beam deflection, 

cross-section rotation, and bending moment are very accurate, while the shear force field is 

piecewise constant. 

 

Keywords: Kriging-based finite element method; Timoshenko beam; shear locking; discrete 

shear gap. 

  
 

 

Introduction   
 

Kriging-based finite element method (K-FEM) is an 

enhancement of the standard finite element method 

(FEM) using a Kriging interpolation (KI) as the trial 

solution in place of a polynomial interpolation [1-3]. In 

this method, KI is constructed for each element using 

a set of nodes including the element nodes and nodes 

of several layers of surrounding elements (called 

satellite nodes). This element and its surrounding 

elements constitute a domain of influencing nodes 

(DOI). Accordingly, the global trial solution is in the 

form of “element-by-element” piecewise Kriging inter-

polation. The key advantages of the K-FEM are first, 

remarkable accurate solutions of the field variables 

and their gradients can be achieved even though 

using the simplest elements, that is, three-node 

triangular elements in 2D problems and four-node 

tetrahedral elements in 3D problems. Secondly, 

solution refinement can be achieved without any 

change to the mesh. Lastly, K-FEM computational 

procedure is similar to the standard FEM so that an 

existing finite element computer program can be 

modified with ease to include the K-FEM. 
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A drawback of the K-FEM is that in 2D and 3D 
problems, the global trial solution is discontinuous 

across element boundaries. In other words, the 
Kriging-based elements are nonconforming. The 
issue of non-conformity and its effects on the conver-

gence characteristics has been addressed in Reference 
[4]. It was found that despite the non-conformity, 
solutions of the K-FEM with a quartic spline correla-

tion function and appropriate Kriging parameters 
always converge to the exact solutions. The adverse 
effect is that the convergence rate and accuracy of the 

K-EFM with a higher degree polynomial basis may 
not be better than with a lower degree polynomial 
basis. Another drawback of the K-FEM is that its 

computational cost is higher than the standard FEM. 
This is primarily because the Kriging interpolation 

does not have an explicit expression; it is constructed 
for each element during the computer running 
process [1].  

 
In the development of K-FEM for analyses of shear 
deformable beams, plates, and shells, as in the 

conventional FEM, the numerical difficulty of shear 
locking and membrane locking occurred [5-8]. In the 
K-FEM for the Timoshenko beam model [7], the 

longstanding selective-reduced integration technique 
(SRI) has been utilized to eliminate the shear locking. 
The results showed that the SRI is effective at elimi-

nating the locking. However, the use of the SRI made 
the results for the case of thick beams less accurate 
and produced erroneous shear force distribution 

(except at the element center).  
 

Subsequently, a more recent approach for eliminating 
shear locking, namely the discrete shear gap (DSG) 
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technique [9-10], was applied in the K-FEM for 

analysis of Timoshenko beams [8]. ‘Shear gap’ at a 
beam point x is defined as the increment of the 
deflection due to shear deformation from a reference 

point x0. ‘Discrete’ shear gaps are shear gaps at the 
nodal points. In the standard FEM for the Timo-
shenko beam model [11], the DSGs were evaluated at 

the element nodal points. In the K-FEM [8], however, 
the DSGs were evaluated at all nodes in a DOI and 
interpolated using Kriging shape functions to create a 

substitute shear gap field. A substitute shear strain 
field, γ-bar, was then obtained by differentiating the 

substitute shear gap. The original displacement-
based shear strain, γ, was replaced with the sub-
stitute shear strain to circumvent the shear locking. 

The numerical tests showed that Kriging-based 
Timoshenko elements with the DSG were free from 
shear locking only for a cubic polynomial basis with 

three element layers and a linear basis with one 
element layer, which is identical as the standard two-
node Timoshenko beam element. The elements with 

other polynomial bases or other numbers of element 
layers suffered from shear locking.  

 

This paper presents a modified implementation of the 

DSG technique to eliminate the shear locking in the 

application of Kriging-based Timoshenko beam 

elements with any degree of polynomial basis func-

tion. The DSGs are evaluated only at the element end 

nodes in this work, not at all nodes in the DOI as in 

the previous work [8]. The substitute shear gap field 

is then constructed using standard linear shape 

functions, not Kriging shape functions. Accordingly, 

the resulting substitute shear strain field is constant 

over an element. A series of numerical tests are 

carried out to study the effectiveness of eliminating 

shear locking, accuracy, and convergence. The results 

show that the Kriging-based Timoshenko beam 

elements using the present implementation of the 

DSG technique are indeed free from shear locking.  
 

Kriging-based Finite Element Method for 

Timoshenko Beams 
 

Weak Form of the Governing Equations 

 

Consider a Timoshenko beam model with the global 

Cartesian coordinate system and positive sign con-

ventions for the deflection, w, cross-section rotation, θ, 

internal bending moment, M, and shear force, Q, as 

shown in Figure 1. The geometrical and material 

parameters of the beam are the beam length, L, the 

cross-sectional area, A, the cross-sectional moment of 

inertia about the y axis, I, the modulus of elasticity E, 

and the shear modulus G. For example (see Fig 1(b)), 

the beam is subjected to a distributed load q, a 

concentrated load P0, and a moment M0 at the left end 

(at x = 0). At the right end, the beam is subjected to a 

prescribed deflection wL and a prescribed rotation θL 

(see Fig 1(b) ), wL = θL = 0 if the right end is clamped. 

The weak form of the governing equations for the 

beam static deformation is given as [12] 

∫ 𝛿𝜃,𝑥 𝐸𝐼 𝜃,𝑥 𝑑𝑥
𝐿

0

+ ∫ (𝛿𝑤,𝑥− 𝛿𝜃)𝐺𝐴s(𝑤,𝑥− 𝜃)𝑑𝑥
𝐿

0

 

= ∫ 𝛿𝑤𝑞 𝑑𝑥
𝐿

0
+ 𝛿𝑤(0)𝑃0 + 𝛿𝜃(0)𝑀0 ∀ 𝛿𝑤, 𝛿𝜃 ∈ 𝕍 

= {𝑣|𝑣 ∈ ℍ1(0, 𝐿), 𝑣(𝐿) = 0} (1) 
 

In words, this integral equation states that if w = w(x) 

and θ = θ(x) are the exact solutions, then the equation 
should be true for any admissible weighting functions 

δw = δw(x) and δθ = δθ(x). The weak form equation 

implicitly contains the beam equilibrium equations 

and force boundary conditions (see the derivation in 

Reference [12]). The weak form is identical to the 

principle of virtual displacement where δw and δθ are 

the virtual deflection and virtual rotation, respec-
tively. The comma denotes the derivative to the 

variable following it. Symbol As is the effective shear 

area of the cross-section, that is, As = kA, where k is a 

shear correction factor depending upon the cross-

section geometry. The second line of the equation 

means that the integral equation is applicable for all 

δw and δθ in the space of admissible weighting 

functions, 𝕍. Space ℍ1(0, 𝐿) is the Sobolev function 

space of first degree [13-14], that is,  

ℍ1(0, 𝐿) = {𝑣| ∫ (𝑣2 + 𝐿2𝑣,𝑥
2 )𝑑𝑥

𝐿

0
< ∞} (2) 

 

The model problem is to find 𝑤 ∈ 𝕊𝑤 = {𝑤|𝑤 ∈
H1(0, 𝐿), 𝑤(𝐿) = 𝑤𝐿} and 𝜃 ∈ 𝕊𝜃 = {𝜃|𝜃 ∈
H1(0, 𝐿), 𝜃(𝐿) = 𝜃𝐿} such that eqn. (1) is satisfied for 

all 𝛿𝑤, 𝛿𝜃 ∈  𝕍.  
 

 
Figure 1.  Coordinate System and the Positive Sign Con-

vention for the Beam Deflection, w, Cross-section Rotation, 

θ(a); External Loads q, P0, M0, Support Conditions wL, θL(b); 

Internal Shear Force(c), Q and Bending Moment, M(d)   
 

Once the solution for w and θ has been obtained, the 

bending moment and shear stress distributions along 

the beam can be obtained using 

𝑀 = 𝐸𝐼𝑦𝑤,𝑥𝑥 (3) 

𝑄 = 𝐺𝐴s(𝑤,𝑥− 𝜃) (4) 
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Kriging-based Finite Element Formulation 
 

For convenience in the subsequent finite element 

formulation, the displacement boundary conditions at 

the beam right end are temporarily removed. Let the 

beam be subdivided into Ne elements and Np nodes 

and consider an element with its surrounding 

elements, which constitutes a two-layer element DOI 

covering n nodes as illustrated in Fig 2. The unknown 

field variables over the element are approximated as 

follows:  

𝑤 ≈ 𝑤ℎ = 𝐍𝑤𝐝 (5a) 

𝜃 ≈ 𝜃ℎ = 𝐍𝜃𝐝 (6a) 

where  

𝐍𝑤 = [𝑁1(𝑥) 0 𝑁2(𝑥) 0 ⋯ 𝑁𝑛(𝑥) 0] (5b) 

𝐍𝜃 = [0 𝑁1(𝑥) 0 𝑁2(𝑥) ⋯ 0 𝑁𝑛(𝑥)] (6b) 

are the matrix of Kriging shape functions for the 

deflection and rotation, respectively, and  

𝐝 = [𝑤1 𝜃1 𝑤2 𝜃2 ⋯ 𝑤𝑛 𝜃𝑛]T (5c) 

is the vector of nodal displacements. The indices here 

use a local numbering system in the DOI. The num-

ber of nodes in the DOI, n, depends on the number of 

elements used in the DOI and is different for the 

interior and exterior elements.  For example, for the 

element with two-layer DOI, n = 4 for the interior 

elements and n = 3 for the exterior elements.  
 

The Kriging shape functions Na(x), a = 1, 2. ..., n are 

obtained by solving the Kriging system of equations 

[2,4,8], that is,  

𝐑𝛌 + 𝐏𝛍 = 𝐫(𝑥) (7a) 

𝐏T𝛌 = 𝐩(𝑥) (7b) 

where  

𝐑 = [
𝐶(ℎ11) … 𝐶(ℎ1𝑛)

… … …
𝐶(ℎ𝑛1) … 𝐶(ℎ𝑛𝑛)

]; 𝐏 = [
𝑝1(𝑥1) … 𝑝𝑚(𝑥1)

… … …
𝑝1(𝑥𝑛) … 𝑝𝑚(𝑥𝑛)

] (7c) 

𝛌 = [1 … 𝑛]T; 𝛍 = [1
… 

𝑚]T (7d) 

𝐫(𝑥) = [𝐶(ℎ1𝑥) 𝐶(ℎ2𝑥) … 𝐶(ℎ𝑛𝑥)]
T
 (7e) 

𝐩(𝑥) = [𝑝1(𝑥) 𝑝2(𝑥) … 𝑝𝑚(𝑥)]T (7f) 
 

In this equation, R is a n×n matrix of covariance 

between two random variables at nodes x1, ..., xn, in 

which hab = xb – xa, a, b = 1,... n; P is a n×m matrix of 

monomial values at the nodes, where m is the number 

of monomial terms. Vector λ is an unknown n×1 

vector of Kriging weights, which is identical to 

Kriging shape functions. Vector μ is an unknown m×1 

vector of Lagrange multipliers. On the right-hand 

side of eqns. (7a) and (7b), vector r(x) is a n×1 vector 

of covariance between random variables at the nodes 

and the point of interest, x, in which hax = x – xa, a = 

1,..., n; p(x) is a m×1 vector of monomial values at x. A 

necessary condition to make the Kriging equation 

system solvable (non-singular) is that n m . 

 
Figure 2. Beam Problem Domain, a Beam Element under 

Consideration and its Domain of Influencing Nodes 

 

To construct Kriging shape functions using eqns. (7a) 

and (7b), one has to choose a correlation model and a 

set of polynomial bases. The correlation model is used 

to generate the covariance matrices R and r, whereas 

the polynomial bases are used to generate matrices P 

and p. Following previous works [7-8], the polynomial 

bases used in the present study are linear, quadratic, 

or cubic polynomial bases. Moreover, the Gaussian or 

quartic spline correlation models is utilized, that is,  

𝜌(ℎ) = exp (− (𝜃𝑟
ℎ

𝑑
)

2

) (8a) 

𝜌(ℎ) =

{
1 − 6 (𝜃𝑟

ℎ

𝑑
)
2
+ 8 (𝜃𝑟

ℎ

𝑑
)
3
− 3 (𝜃𝑟

ℎ

𝑑
)
4
 for 0 ≤ 𝜃𝑟

ℎ

𝑑
≤ 1

0                                                           for 𝜃𝑟
ℎ

𝑑
> 1

 (8b) 

 

Here, θr is a correlation parameter, h is the distance 

between two points in the DOI, and d is the largest 

distance between two nodes in the DOI.  

 

Substituting the approximate functions, eqns. (5) and 

(6), into the global weak form, eqn. (1), and carrying 

out the standard of finite element formulation gives 

the discretized matrix equation, that is,  

𝐊𝐃 = 𝐅a + 𝐅𝑞 (9) 

In this equation, K is the structural stiffness matrix, 

that is,  

𝐊 = ∑ 𝐤b
𝑒𝑁𝑒

1 + ∑ 𝐤s
𝑒𝑁𝑒

1   (10a) 

𝐤b
𝑒 = ∫ 𝐁𝜃

𝑒T𝐿𝑒

0
𝐸𝐼𝐁𝜃

𝑒  𝑑𝑥; 𝐤s
𝑒 = ∫ 𝐁𝛾

𝑒T𝐿𝑒

0
𝐺𝐴𝑠𝐁𝛾

𝑒  𝑑𝑥  (10b, c) 

D is the structural nodal displacement vector, that is,  

𝐃 = [𝑤1 𝜃1 𝑤2 𝜃2 ⋯ 𝑤𝑁𝑝
𝜃𝑁𝑝]

T
  (11) 

Fa is the vector of nodal applied forces, which for 

example shown in Fig. 1 is  

𝐅a = {𝑃0 𝑀0 0 0 ⋯ 0 0}T  (12) 

Fq is the equivalent nodal force vector due to a 

distributed load q, that is,  

𝐅𝑞 = ∑ 𝐟𝑞
𝑒𝑁𝑒

1  ;    𝐟𝑞
𝑒 = ∫ 𝐍𝑤

𝑇𝐿𝑒

0
𝑞𝑑𝑥 (13a, b) 

 

The order of matrix K is 2Np × 2Np and the order of 

vectors D, Fa dan Fq are 2Np × 1. Matrices 𝐤b
𝑒  and 𝐤s

𝑒 

are 2n × 2n element stiffness matrices corresponding 

to bending and shear deformations, respectively, of 
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element number e, e = 1, 2, ..., Ne. Vector 𝐟𝑞
𝑒 is a 2n × 1 

element equivalent nodal force vector due to q of 

element number e. Matrices Bθ and Bγ in eqns. (10b) 

and (10c) are given as  

𝐁𝜃
𝑒 =

𝑑

𝑑𝑥
𝐍 (14a) 

𝐁𝛾
𝑒 =

𝑑

𝑑𝑥
𝐍𝑤 − 𝐍 (14b) 

 

The summation symbols in eqns. (10a) and (13a) 
denote the finite element assembly process, not the 
usual summation. The assembly process here invol-
ves all nodes in the DOI, not just elements nodes as in 
the standard FEM.  
 

Discrete Shear Gap Technique 
 

The use of the Kriging-based Timoshenko beam (K-
beam) element model, eqn. (9), with exact integration 
of all integrals, gives much smaller displacement 
results than the true solutions for a very thin beam [7-
8]. This phenomenon is well-known in the FEM and 
it is referred to as shear locking [15]. An approach to 
overcome the shear locking is the DSG technique [10, 
16]. The basic idea of this technique is to replace the 
assumed displacement-based transverse shear strain 
over an element, 𝛾𝑒 = 𝑤,𝑒𝑥  –  𝜃𝑒, with a substitute 

shear strain, 𝛾𝑒̅̅ ̅. This substitute strain field is 
obtained from the derivative of a substitute shear gap 
field [8,11]. In the previous work of Wong et al. [8], the 
DSG technique was applied in the K-beam models to 
eliminate the shear locking. However, the K-beam 
with the DSG was only effective for the K-beam-DSG 
elements with a cubic basis function and three-
element-layer DOI. This section presents a modified 
implementation of the DSG technique to improve the 
performance of the previous K-beam-DSG element 
[8].  
 
A shear gap field is defined as the increment of the 
deflection from a reference point x0, due to shear 
strain, that is,  

𝑤(𝑥) = ∫ 
𝑥

𝑥0
 𝑑𝑥 = 𝑤|𝑥0

𝑥 − ∫  𝑑𝑥
𝑥

𝑥0
 (15) 

A discrete shear gap is the shear gap at a nodal point 
xi, that is,   

𝑤𝑖 = 𝑤(𝑥𝑖) = ∫ 
𝑥𝑖

𝑥0
𝑑𝑥 = 𝑤|𝑥0

𝑥𝑖 − ∫  𝑑𝑥
𝑥𝑖

𝑥0
 (16) 

To eliminate shear locking, a substitute shear gap 
field is constructed by interpolating DSGs at several 
nodal points, viz.  

𝑤(𝑥)  =  ∑ 𝐼𝑖(𝑥)𝑛DSG
𝑖=1 𝑤𝑖 (17) 

where Ii(x), i = 1, 2, ..., nDSG are nodal interpolation or 
shape functions for the substitute shear gap and nDSG 
is the number of nodal shear gaps. A substitute shear 
strain field is then obtained by taking the derivative 
of the substitute shear gap field, that is,  

𝛾(𝑥) = ∑ 𝐼𝑖 ,𝑥 (𝑥)𝑛DSG
𝑖=1 𝑤𝑖 (18) 

In the previous work [8], the DSGs were evaluated at 
all nodal points in the DOI, thus nDSG = n, and the 
interpolation functions used to construct the sub-
stitute shear gap were the Kriging shape functions 
used to interpolate the displacement fields, that is, 
Ii(x) = Ni(x). In this study, the DSGs are only evalu-
ated at the element nodal points and the interpolation 
functions used are the standard linear interpolants. 
Accordingly, the substitute shear gap field is given as  

𝛾(𝑥) = ∑ 𝐿𝑖,𝑥 (𝑥)2
𝑖=1 𝑤𝑖 (19a) 

where L1,x and L2,x are the derivatives of the standard 
linear shape functions, that is,  

𝐿1,𝑥 = −
1

𝐿𝑒 ;   𝐿2,𝑥 =
1

𝐿𝑒 (19b, c) 

where Le is the element length.  
 
In order to implement the present concept in a 
computer code, the shear gaps at the element nodes 
are firstly evaluated by taking the first node in the 
DOI under consideration (see Fig. 2) as the reference 
point and substituting the approximated rotation, 
eqn. (6a), into eqn. (16), that is,  

𝑤𝑖 = (𝑤𝑖 − 𝑤1) − (∫ 𝐍𝜃(𝑥) 𝑑𝑥
𝑥𝑖

𝑥1
)𝐝 (20) 

 

Hence, the DSGs at the element nodes can be expres-
sed as  

𝐰𝛾 = 𝐁𝛾2𝐝 (21a) 

where 
𝐰𝛾 = {∆𝑤𝛾𝑎 ∆𝑤𝛾𝑎+1}T (21b) 

a, a+1:  element node numbers 
𝐁𝛾2

=

[
 
 
 
 −1 −∫ 𝑁1𝑑𝑥

𝑥𝑎

𝑥1

0 − ∫ 𝑁2𝑑𝑥
𝑥𝑎

𝑥1

⋯ 1 −∫ 𝑁𝑎𝑑𝑥
𝑥𝑎

𝑥1

⋯ 0 − ∫ 𝑁𝑛𝑑𝑥
𝑥𝑎

𝑥1

−1 − ∫ 𝑁1𝑑𝑥
𝑥𝑎+1

𝑥1

0 − ∫ 𝑁2𝑑𝑥
𝑥𝑎+1

𝑥1

⋯ 1 −∫ 𝑁𝑎+1𝑑𝑥
𝑥𝑎+1

𝑥1

⋯ 0 −∫ 𝑁𝑛𝑑𝑥
𝑥𝑎+1

𝑥1 ]
 
 
 
 

 

 (21c) 
𝐝 = [𝑤1 𝜃1 𝑤2 𝜃2 ⋯ 𝑤𝑛 𝜃𝑛]T (21d) 
 

Writing eqn. (19a) in matrix forms,  

𝛾(𝑥) = 𝐁𝛾1𝐰𝛾 (22a) 

𝐁𝛾1 =
1

𝐿𝑒
[−1 1] (22b) 

Substituting eqn. (21a) into eqn. (22a) gives  

𝛾(𝑥) = 𝐁𝛾1 𝐁𝛾2d = 𝐁𝛾𝐝 (23) 
 

The implementation of the DSG concept is thus 
accomplished by replacing the matrix 𝐁𝛾

𝑒 in the shear 

stiffness matrix, eqn. (10c), with the substitute shear 

strain-displacement matrix, 𝐁𝛾.   

 

Numerical Results 
 

A series of numerical tests were carried out to inves-

tigate the performance of the Kriging-based beam 

element with the improved implementation of the 

DSG, which is referred to as K-beam-DSG1. The tests 

included shear locking, accuracy, and convergence 

tests. The test problems used were the same as in the 
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previous work [8]. The K-beam-DSG1 options used 

included linear, quadratic, and cubic polynomial 

bases with one to three element-layer DOIs and the 

Gaussian (G) and the quartic spline (QS) correlation 

functions. The correlation parameters were taken to 

be the middle values between the lower and upper 

bounds presented in the previous work [8]. However, 

since in all cases the results using the G and QS 

functions were nearly the same, only the results using 

the QS function were presented in this paper. 

Abbreviations of the form P*-*-QS were used to 

denote different K-beam-DSG1 options. The first 

asterisk represents the degree of a polynomial basis, 

whereas the second one indicates the number of DOI 

element layers. For example, P2-3-QS means K-beam 

element using a complete quadratic basis with three-

element layer DOI and the quartic spline correlation 

function.  
 

In all tests, the shear correction factor used is given as 

[17]  

𝑘 =
10(1+𝜈)

12+11𝜈
 (24) 

 

The integrals in the element stiffness matrices, eqns. 

(10b, c), the equivalent nodal force vectors, eqn. (13b), 

and the DSGs, eqn. (21c), were numerically evaluated 

using three Gaussian sampling points. The results 

were compared to those obtained using the K-beam of 

the previous work [8], which is referred to as K-beam-

DSG0.  
 

Shear Locking Tests 
 

The test was carried out using a fixed-fixed supported 

beam subjected to a uniformly distributed load of q = 

1 kN/m (Fig. 3). The material and geometrical 

parameters are E = 2000 kN/m2, L = 10 m, b = 2 m, v 

= 0.3. To investigate the shear locking, the beam 

length-to-thickness ratio was varied from L/h = 5 (a 

relatively thick beam) to L/h = 10000 (an extremely 

thin beam). The beam was discretized using eight K-

beam-DSG1 elements. The analysis results for the 

beam deflection at the midspan were recorded and 

normalized with the exact solution, that is,  

𝑤exact = 
𝑞𝐿4

384𝐸𝐼
+

𝑞𝐿2

8𝐺𝐴𝑠
 (25) 

 

Table 1 presents the normalized beam deflection at 

the midspan for different length-to-thickness ratios, 

L/h, and different Kriging interpolation options. The 

table demonstrates that the present K-beam ele-

ments of all types are free from shear locking. In 

contrast, the K-beam-DSG0 elements are locking free 

only for the types of P1-1-QS and P3-3-QS. When the 

beam is relatively thick (L/h = 5 and 10), however, the 

present K-beam elements give a bit less accurate 

results compared to the previous elements.  

 

 
 
Figure 3. Fixed-fixed Supported Beam Modeled using 

Eight Beam Elements 

 

Table 1. Normalized Midspan Deflections of the Fixed-fixed 

Beam with Different Length-to-thickness Ratios Modeled 

using Eight K-beam Elements 

L/h 
P1-1-QS P1-2-QS   

DSG1 DSG0 [8] DSG1 DSG0 [8]   

5 0.958 0.958 1.005 0.999   
10 0.944 0.944 1.002 1.000   

100 0.938 0.938 1.001 0.959   
1000 0.938 0.938 1.001 0.206   

10000 0.938 0.938 1.001 0.003   
        

L/h 
P2-2-QS P2-3-QS P3-3-QS 

DSG1 DSG0 [8] DSG1 DSG0 [8] DSG1 DSG0 [8] 

5 1.005 1.001 1.005 1.003 1.004 1.001 

10 1.003 1.001 1.004 1.003 1.002 1.001 

100 1.002 0.993 1.003 0.994 1.001 1.001 

1000 1.002 0.540 1.003 0.505 1.001 1.001 

10000 1.002 0.011 1.003 0.010 1.001 1.001 

   
(a)                                                                                                                   (b) 

Figure 4. Shear Force Diagram for the Fixed-fixed Supported Beam with L/h = 10000 Obtained using the K-beam-DSG1 

Elements of Different Types: (a) P1-1-QS, P2-2-QS, P3-3-QS; (b) P1-1-QS, P1-2-QS, P2-3-QS 
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The shear force diagrams for the beam of L/h =10000 
resulting from the use of the K-beam-DGS1 of 
different types were plotted in Fig. 4 and compared to 
the exact shear force diagram. The figure shows that 
all of the K-beam-DSG1 elements give constant shear 
force distributions for each element (that is, piecewise 
constant). The shear force values resulting from 
different types of the K-beam-DSG1 are nearly the 
same for each element. The most accurate shear force 
prediction is approximately located at the middle 
point of each element. In contrast, the shear force 
distributions obtained using the K-beam-DSG0 
elements [8] were fluctuating around the exact shear 
force line and were in great error for those obtained 
using the options of P1-2-QS and P2-3-QS. Thus, the 
present K-beam elements improved the shear force 
distribution results significantly.  
 

Pure Bending Tests 
 

Consider a cantilever beam subjected to an external 
bending moment, M, at the free end as shown in Fig. 
5. The beam is under a pure bending condition with a 
constant moment M and zero shear force along the 
beam. The material and geometrical parameters were 
taken to be equal to those of the beam in the shear 
locking test and M = 1 kN-m. Two different length-to-
thickness ratios were considered in this test, namely, 
L/h = 5 and L/h = 10000. The beam was discretized 
using four K-beam elements of different lengths as 
shown in the figure.  
 
The analysis results of the deflection and rotation at 
the free end were observed and normalized to the 
analytical solutions, that is,  

𝑤exact =  
𝑀𝐿2

2𝐸𝐼
 ;   𝜃exact  =

𝑀𝐿

𝐸𝐼
 (26) 

In addition, the bending moments and shear forces at 
the fixed end were observed. The bending moments 
were then normalized to the analytical solution, M = 
1. The shear forces, however, were not normalized 
since the exact shear force is zero. 
 

 
Figure 5. Cantilever Beam Modeled using Four Elements 
of Unequal Length 
 
Table 2. Analysis Results for the Cantilever Beam of L/h = 
10000 under Pure Bending, Modeled using Four K-beam-
DSG1 Elements of Unequal Length with Different Element 
Types 

K-beam-DSG 
options 

wL/wL exact θL/θL exact M0/M0 exact V0 

P1-1-QS 1.0000000 1.0000000 1.0000000 6.52E-09 
P1-2-QS 1.0000001 1.0000001 1.0000001 1.67E-08 
P2-2-QS 1.0000001 1.0000001 1.0000002 2.07E-08 
P2-3-QS 1.0000002 1.0000001 1.0000003 1.23E-08 
P3-3-QS 1.0000001 1.0000000 1.0000001 9.55E-09 

For the case of the beam of L/h = 5, all of the resulting 

deflections, rotations, and shear forces obtained using 

different K-beam-DGS1 are exact within computer 

double precision accuracy. The bending moments are 

very close to the exact value, that is,14 digits accurate. 

The results for the beam of L/h = 10000 were 

presented in Table 2. It is seen that the deflections, 

rotations, and bending moments have at least seven-

digit accuracy. The errors for the shear forces are on 

the order of 10−8 or 10−9. In comparison to the previous 

K-beam-DSG elements [8], the performance of the 

improved K-beam-DSG in this problem is similar.  
 

It is worth mentioning here that this constant 

bending test may be regarded as a type of patch test 

for beam finite elements [11]. A beam element passes 

the test if it can reproduce exact results (within 

computer accuracy). Therefore, the K-beam-DGS1 

elements pass the pure bending patch test since they 

produced the exact or nearly exact results.   

 

Assessment of Accuracy and Convergence 

 

A cantilever beam subjected to a triangular-distri-

buted load (Figure 6) was utilized to assess the per-

formance of the present K-beam elements in terms of 

accuracy and convergence. The geometric, material, 

and load data were taken as follows: L = 4 m, L/h = 8, 

b = 2 m, E = 1000 kN/m2, v = 0.3, and q0 = q(0) = 1 

kN/m. The beam was modeled using different 

numbers of K-beam elements, that is, 4, 8, 16, and 32 

elements. The results of the tip deflections, the 

bending moments at the fixed end, and the shear 

forces at the fixed end were observed and normalized 

to their corresponding analytical solutions [18], that 

is,  

𝑤𝐿 =  
𝑞0𝐿4

30𝐸𝐼
(1 +

5

12
𝜙);   𝜙 =

12+11𝜈

5
(

ℎ

𝐿
)

2

 (27a, b) 

21
0 06

M q L=  , 1
0 02

Q q L=  (28a, b) 

 

Table 3 presented all of the normalized analysis 

results using different types of K-beam-DSG1 ele-

ments. The table shows that the elements give highly 

accurate results of the deflections and bending 

moments and reasonably accurate results of the shear 

forces. Moreover, the table demonstrates the excellent 

convergence characteristics of the K-beam-DGS1 

elements.  
 

 

Figure 6. Cantilever Beam Subjected to a Linearly Distri-

buted Force q 
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Table 3. Analysis Results for the Cantilever Beam (L/h = 8) 

Subjected to a Linearly Distributed Force, Modeled using 

Different Numbers, Nelem, and Different Types of K-beam-

DSG1 Elements 

(a) Normalized tip deflection 

Nelem P1-1-QS P1-2-QS P2-2-QS P2-3-QS P3-3-QS 

4 1.02489 1.00324 1.00359 1.00311 1.00000 

8 1.00634 0.99888 1.00026 1.00017 1.00000 

16 1.00159 0.99946 1.00002 1.00001 1.00000 

32 1.00040 0.99983 1.00000 1.00000 1.00000 

 

(b) Normalized fixed-end bending moment 

Nelem P1-1-QS P1-2-QS P2-2-QS P2-3-QS P3-3-QS 

4 0.71094 0.80281 0.93369 0.90683 1.00305 

8 0.83496 0.89753 0.98121 0.97279 1.00272 

16 0.91199 0.94800 0.99503 0.99270 1.00094 

32 0.95457 0.97383 0.99872 0.99811 1.00027 

 

(c) Normalized fixed-end shear force 

Nelem P1-1-QS P1-2-QS P2-2-QS P2-3-QS P3-3-QS 

4 0.77083 0.81296 0.82066 0.81910 0.83628 

8 0.88021 0.90459 0.90829 0.90723 0.91496 

16 0.93880 0.95182 0.95363 0.95295 0.95684 

32 0.96908 0.97579 0.97669 0.97631 0.97826 

 

The higher degree of the polynomial basis used, as 

expected, the more accurate the results obtained for 

the same number of elements. The use of the K-beam-

DSG1 with cubic basis, P3-3-QS, can reproduce the 

exact tip deflection even though using four elements.  

 

To compare the results to those obtained using the K-

beam-DSG0, consider the cases studied in Wong et al. 

[8], that is, the cantilever beam of the length-to-

thickness rations L/h = 8 (moderately thick beam), L/h 

= 1 (extremely thick beam), and L/h = 10000 

(extremely thin beam). The beam was analyzed using 

the K-beam-DSG1 element of P3-3-QS only because 

this element was the only type of the K-beam-DSG0 

element that was used in Wong et al. [8]. Comparison 

of the results of the tip deflections, bending moments 

at the fixed end, and shear forces at the fixed end were 

presented in Table 4. It is seen that for the cases of the 

thick beams, the accuracy of the deflections and 

bending moments from the K-beam-DSG1 and DSG0 

P3-3-QS is approximately equal. However, the shear 

forces obtained using the present element are less 

accurate, in particular, for the course mesh discre-

tization (Nelem = 4). For the case of the extremely thin 

beam, the deflections obtained using both methods 

remain very accurate, but the accuracy of the bending 

moments and shear forces obtained using the K-

beam-DSG0 element declines. It is apparent that the 

performance of the K-beam-DSG1 elements is not 

affected by the change of the beam thickness. In con-

trast, the performance of the K-beam-DSG0 elements 

decreases as the beam becomes thinner.  

 

Table 4. Normalized Analysis Results for the Cantilever 

Beam of Different Length-to-thickness Ratios Subjected to a 

Linearly Distributed Force, Modeled using Different Num-

bers, Nelem, of the K-beam-DSG1 and K-beam-DSG0 P3-3-

QS [8] Elements 

(a) Moderately thick beam, L/h = 8 

Nelem 
Deflection Bending Moment Shear Force 

DSG1 DSG0 DSG1 DSG0 DSG1 DSG0 

4 1.00000 0.99989 1.00305 0.99972 0.83628 1.03397 

8 1.00000 0.99999 1.00272 1.00190 0.91496 1.00210 

16 1.00000 1.00000 1.00094 1.00074 0.95684 1.00022 

32 1.00000 1.00000 1.00027 1.00022 0.97826 1.00003 

 

(b) Extremely thick beam, L/h = 1 

Nelem 
Deflection Bending Moment Shear Force 

DSG1 DSG0 DSG1 DSG0 DSG1 DSG0 

4 1.00000 0.99995 1.00305 1.00055 0.83628 1.00097 

8 1.00000 1.00000 1.00272 1.00192 0.91496 1.00019 

16 1.00000 1.00000 1.00094 1.00074 0.95684 1.00004 

32 1.00000 1.00000 1.00027 1.00022 0.97826 1.00001 

 

(c) Extremely thin beam, L/h = 10000 

Nelem 
Deflection Bending Moment Shear Force 

DSG1 DSG0 DSG1 DSG0 DSG1 DSG0 

4 1.00000 0.99989 1.00305 0.95561 0.83628 2.79078 

8 1.00000 0.99999 1.00272 0.95087 0.91496 2.58935 

16 1.00000 1.00000 1.00094 0.98499 0.95684 0.61493 

32 1.00000 1.00000 1.00027 0.99917 0.97826 0.97775 

 

Figure 7 shows the shear force diagram for the beam 

of L/h =8, obtained using four present and previous 

P3-3-QS K-beam elements, compared to the true 

shear force diagram. It is seen that the previous beam 

element gives a more accurate shear force distribution 

compared to the present element. This confirms that 

for the case of thick beams, the present beam element 

is less accurate in predicting the shear force field. 

However, if the beam becomes thinner, the accuracy 

of the present element remains the same while the 

accuracy of the previous element decreases.  
 

 

Figure 7. Shear Force Diagram for the Cantilever Beam 

with L/h = 8 Obtained using the K-beam-DSG1 and K-beam-

DSG0 Elements of P3-3-QS  
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Conclusions 
 

In the previous work [8], the DSG technique was 

applied to eliminate shear locking in Kriging-based 

Timoshenko beam elements (referred to K-beam-

DSG0 elements in this paper). However, it was only 

effective for the K-beam using a cubic basis and three-

element layer DOI. In this work, the implementation 

of the DSG technique has been modified in an attempt 

to improve the K-beam-DSG0 elements. The modi-

fication made was to change the formulation of the 

substitute DSG interpolation from a Kriging inter-

polation of nodal shear gaps at all nodes in the DOI to 

a linear interpolation of nodal shear gaps at the 

element nodes only. The numerical tests showed that 

the modified K-beam-DSG elements (referred to K-

beam-DSG1 elements) of all types are truly free from 

shear locking, pass the pure bending test, can give 

highly accurate results of the deflection and bending 

moment with a relatively small number of elements, 

and have excellent convergence characteristics. The 

accuracy of the K-beam-DSG1 elements is not affect-

ed by a change in beam thickness. The resulting shear 

force distributions, however, do not match the true 

shear force distribution and are piecewise constant.  

 

The present K-beam-DSG1 formulation gives insight 

regarding the implementation of the DSG technique 

in the framework of Kriging-based FEM. Further 

research may be directed to the extension of the 

present elements for vibration analysis, buckling ana-

lysis, and geometrically nonlinear analysis. Another 

research direction that may be taken is an imple-

mentation of the DSG technique in Kriging-based 

curved beam elements, plate bending elements, and 

shell elements. 
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